4.6 Article

Effect of interface states on spin-dependent tunneling in Fe/MgO/Fe tunnel junctions

Journal

PHYSICAL REVIEW B
Volume 72, Issue 14, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.140404

Keywords

-

Ask authors/readers for more resources

The electronic structure and spin-dependent tunneling in epitaxial Fe/MgO/Fe(001) tunnel junctions are studied using first-principles calculations. For small MgO barrier thickness the minority-spin resonant bands at the two interfaces make a significant contribution to the tunneling conductance for the antiparallel magnetization, whereas these bands are, in practice, mismatched by disorder and/or small applied bias for the parallel magnetization. This explains the experimentally observed decrease in tunneling magnetoresistance (TMR) for thin MgO barriers. We predict that a monolayer of Ag epitaxially deposited at the interface between Fe and MgO suppresses tunneling through the interface band and may thus be used to enhance the TMR for thin barriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available