4.7 Article

Oxygen isotope fractionation during synthesis of CaMg-carbonate and implications for sedimentary dolomite formation

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 69, Issue 19, Pages 4665-4674

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2005.06.025

Keywords

-

Ask authors/readers for more resources

Hydrous CaMg-carbonate was synthesized at temperatures of 40 degrees, 60 degrees and 80 degrees C in the laboratory. This material has very similar mineralogical characteristics to natural disordered dolomite from the Coorong region in South Australia. Besides the dolomite variable amounts of amorphous carbonate are present in all samples. The oxygen isotope compositions of synthesized bulk carbonate samples (e.g., amorphous carbonate plus dolomite) plot significantly lower than the Northrop and Clayton (1966) dolomite-water equilibrium. Fractionated degassing of the samples, however, revealed relatively low oxygen isotope values for fast-reacting (using 100% H3PO4) amorphous carbonate. In contrast, slow-reacting dolomite has more positive oxygen isotope values, and calculated carbonate-water oxygen isotope fractionation values are close to strongest known dolomite-water oxygen isotope fractionation published earlier on. Variations of reaction/stabilization temperatures during synthesis gave evidence for dolomite formation from hypersaline solutions by a dissolution/reprecipitation process. It is likely that amorphous carbonate has been a problem in defining the dolomite-water fractionation in the past. Moreover, dolomite-associated amorphous carbonate contents probably led to incorrect speculations about lower oxygen isotope fractionation in a so-called protodolomite-water system. Copyright (c) 2005 Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available