4.2 Review

Quantum macrostatistical theory of nonequilibrium steady states

Journal

REVIEWS IN MATHEMATICAL PHYSICS
Volume 17, Issue 9, Pages 977-1020

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0129055X05002492

Keywords

quantum macrostatistics; nonequilibrium steady states; chaotic current fluctuations; long range hydrodynamical correlations

Ask authors/readers for more resources

We provide a general macrostatistical formulation of nonequilibrium steady states of reservoir driven quantum systems. This formulation is centered on the large scale properties of the locally conserved hydrodynamical observables, and our basic physical assumptions comprise (a) a chaoticity hypothesis for the nonconserved currents carried by these observables, (b) an extension of Onsager's regression hypothesis to fluctuations about nonequilibrium states, and (c) a certain mesoscopic local equilibrium hypothesis. On this basis, we obtain a picture wherein the fluctuations of the hydrodynamical variables about a nonequilibrium steady state execute a Gaussian Markov process of a generalized Onsager-Machlup type, which is completely determined by the position dependent transport coefficients and the equilibrium entropy function of the system. This picture reveals that the transport coefficients satisfy a generalized form of the Onsager reciprocity relations in the nonequilibrium situation and that the spatial correlations of the hydrodynamical observables are generically of long range. This last result constitutes a model-independent quantum mechanical generalization of that obtained for special classical stochastic systems and marks a striking difference between the steady nonequilibrium and equilibrium states, since it is only at critical points that the latter carry long range correlations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available