4.2 Article

Systemic inflammation induces apoptosis with variable vulnerability of different brain regions

Journal

JOURNAL OF CHEMICAL NEUROANATOMY
Volume 30, Issue 2-3, Pages 144-157

Publisher

ELSEVIER
DOI: 10.1016/j.jchemneu.2005.07.003

Keywords

sepsis iNOS brain apoptosis; septic encephalopathy; immunoreactivity

Ask authors/readers for more resources

During severe sepsis several immunological defence mechanisms initiate a cascade of inflammatory events leading to multi-organ failure including septic encephalopathy and ultimately death. To assess the reaction and participation of parenchymal brain cells during endotoxaemia, the present study evaluates micro- and astroglial activation, expression of the inducible nitric oxide synthase (iNOS) pro- and antiapoptotic protein levels Bax and Bcl-2, and apoptosis. Male Wistar rats received 10 mg/kg lipopolysaccharide (LPS) or vehicle intraperitoneally and were sacrificed for brain collection at 4, 8 or 24 It after induction of experimental sepsis. One group of animals received 10 mg/kg of the NOS inhibitor N-monomethyl-L-arginine (L-NMMA) intraperitoneally 1 day before and during the experiment. Immunohistochemical evaluation revealed a sepsis-induced, time-dependent increase in the immunoreactivity of iNOS, glial fibrillary acidic protein (GFAP) and activated microglia (ED-1), paralleled by a time-dependent increase of apoptotic brain cells marked by terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL), an increase of Bax-positive cells and a decrease of Bcl-2-positive cells. Evaluation of different brain regions revealed that the hippocampus is the most vulnerable region during experimental sepsis. iNOS-inhibition with L-NMMA significantly reduced the number of apoptotic cells in hippocampus, midbrain and cerebellum. In addition, it reduced the increase of the proapoptotic protein Bax in all examined brain regions and reduced the decrease of Bcl-2-positive cells in the hippocampus. We therefore conclude, that peripheral inflammation leads to a profound glial activation, the generation of nitric oxide and changes of Bax and Bcl-2 protein regulation critical for apoptosis. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available