4.5 Article

Lysine is catabolized to 2-aminoadipic acid in Penicillium chrysogenum by an ω-aminotransferase and to saccharopine by a lysine 2-ketoglutarate reductase.: Characterization of the ω-aminotransferase

Journal

MOLECULAR GENETICS AND GENOMICS
Volume 274, Issue 3, Pages 272-282

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00438-005-0018-3

Keywords

Penicillium chrysogenum; lysine; omega-aminotransferase; 2-aminoadipic acid; penicillin biosynthesis

Ask authors/readers for more resources

The biosynthesis and catabolism of lysine in Penicillium chrysogenum is of great interest because these pathways provide 2-aminoadipic acid, a precursor of the tripeptide delta-L-2-aminoadipyl-L-cysteinyl-D-valine that is an intermediate in penicillin biosynthesis. In vivo conversion of labelled L-lysine into two different intermediates was demonstrated by HPLC analysis of the intracellular amino acid pool. L-lysine is catabolized to 2-aminoadipic acid by an omega-aminotransferase and to saccharopine by a lysine-2-ketoglutarate reductase. In lysine-containing medium both activities were expressed at high levels, but the omega- aminotransferase activity, in particular, decreased sharply when ammonium was used as the nitrogen source. The omega-aminotransferase was partially purified, and found to accept L-lysine, L-ornithine and, to a lesser extent, N-acetyl-L-lysine as amino-group donors. 2-Ketoglutarate, 2-ketoadipate and, to a lesser extent, pyruvate served as amino group acceptors. This pattern suggests that this enzyme, previously designated as a lysine-6-aminotransferase, is actually an omega-aminotransferase. When 2-ketoadipate is used as substrate, the reaction product is 2-aminoadipic acid, which contributes to the pool of this intermediate available for penicillin biosynthesis. The N-terminal end of the purified 45-kDa omega-aminotransferase was sequenced and was found to be similar to the corresponding segment of the OAT1 protein of Emericella (Aspergillus) nidulans. This information was used to clone the gene encoding this enzyme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available