4.6 Article

Modeling and design of an optimized liquid-crystal optical phased array

Journal

JOURNAL OF APPLIED PHYSICS
Volume 98, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2071450

Keywords

-

Ask authors/readers for more resources

In this paper, the physics that determines the performance limits of a diffractive optical element based on a liquid-crystal (LC) optical phased array (OPA) is investigated by numerical modeling. The influence of the fringing electric fields, the LC material properties, and the voltage optimization process is discussed. General design issues related to the LC OPA configuration, the diffraction angle, and the diffraction efficiency are discussed. A design for a wide-angle LC OPA is proposed for high-efficiency laser beam steering. This work provides fundamental understanding for a light beam deflected by a diffractive liquid-crystal device.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available