4.4 Article Proceedings Paper

Comprehensive simulation of the response of a silicon strip detector for position-sensitive measurements of X-rays

Publisher

ELSEVIER
DOI: 10.1016/j.nima.2005.07.042

Keywords

silicon strip detectors; X-ray detectors; spatial resolution; charge sharing; transport equations; ramo theorem

Ask authors/readers for more resources

The paper describes a comprehensive simulation method to evaluate X-ray imaging response of a silicon strip detector with particular emphasis on the charge-sharing effects. The simulation steps include: generation of the initial charge distribution in the detector volume, transport of generated charge in the detector volume, calculation of charges induced in the readout strips, discrimination of noisy electronic signals, and finally determination of the count efficiency vs. photon position as a function of the discrimination threshold. The developed simulation tools are useful for optimising the designs and operating parameters of silicon strip detectors used as 1-D position sensitive devices in experimental techniques like X-ray powder diffraction, X-ray high-resolution diffraction and small angle X-ray scattering, using laboratory X-ray sources. The response of the detector as a function of the detector bias and discrimination threshold has been investigated for two measurement configurations: irradiation from the strip-side and from the back-side. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available