4.6 Article

Differential expression of melanoma-associated growth factors in keratinocytes and fibroblasts by ultraviolet A and ultraviolet B radiation

Journal

BRITISH JOURNAL OF DERMATOLOGY
Volume 153, Issue 4, Pages 733-739

Publisher

WILEY
DOI: 10.1111/j.1365-2133.2005.06780.x

Keywords

fibroblasts; growth factor; keratinocytes; melanocyte; melanoma; ultraviolet radiation

Categories

Ask authors/readers for more resources

Background Besides the direct DNA-damaging effects of ultraviolet (UV) radiation on cells, indirect effects on the microenvironment of the skin may facilitate melanoma development. A stimulation of growth factor production by cells in the immediate environment of melanocytes may lead to a paracrine activation and proliferation of melanocytes that in turn become more susceptible to transformation. Objectives We investigated whether the expression of growth factors for melanocytes can be modulated in keratinocytes and fibroblasts by UVA or UVB. Methods After irradiation with different doses of UVA or UVB, protein expression of basic fibroblast growth factor (bFGF), endothelin (ET)-1, transforming growth factor (TGF)-beta 1, platelet-derived growth factor (PDGF)-AA, stem cell factor (SCF) and hepatocyte growth factor (HGF) was analysed by quantitative enzyme-linked immunosorbent assay. The mRNA expression of bFGF and ET-1 was analysed by quantitative real-time reverse transcriptase-polymerase chain reaction. Results In keratinocytes, UVB and UVA increased bFGF protein levels up to 2.6-fold. This increase was paralleled by elevated mRNA levels. UVB also induced ET-1 protein up to 1.8-fold, while UVA led to an 80% decrease. Secreted TGF-beta 1 and PDGF-AA were downregulated by UVA by less than 50%, while there was no significant alteration by UVB. Secreted SCF was not changed significantly by UVA or UVB. In fibroblasts, bFGF protein levels were increased 11-64-fold by UVA and 34-61-fold by UVB. This was paralleled by elevated mRNA levels for bFGF up to 2.7-fold. HGF protein was stimulated by UVA up to 2.8-fold and by UVB up to 6.7-fold, while TGF-beta 1 protein was increased up to 2.7-fold by UVB and 1.7-fold by UVA. Conclusions UVA and UVB can stimulate and inhibit the production of growth factors for melanocytes in keratinocytes and fibroblasts dependent on the cell type and wavelength. We show for the first time that UVA and UVB can activate bFGF, HGF and TGF-beta 1 in fibroblasts, while bFGF was the most inducible factor both in fibroblasts and in keratinocytes. The induction of bFGF and HGF in fibroblasts by UVA suggests that stroma cells in the dermis may be involved in the UV activation of melanocytes via paracrine ways and thus promote melanoma development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available