4.8 Article

Microscopic artificial swimmers

Journal

NATURE
Volume 437, Issue 7060, Pages 862-865

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature04090

Keywords

-

Ask authors/readers for more resources

Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns(1). For example, bacterial flagella are helically shaped(2) and driven at their bases by a reversible rotary engine(3), which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods(4) and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip(5-7). In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniformmagnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available