4.5 Article

Enhanced resonant Raman scattering and electron-phonon coupling from self-assembled secondary ZnO nanoparticles

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 39, Pages 18385-18390

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0533731

Keywords

-

Ask authors/readers for more resources

Self-assembled secondary ZnO nanoparticles, recognized with the agglomeration of crystalline subcrystals, are successfully synthesized by a simple sol-gel method. TEM images display that one artificial cluster behaves in a single-crystal-like wurtzite structure because subcrystals coagulate as the same crystal orientation. Moreover, from the resonant Raman scattering, the as-grown sample exhibits phonon red shift; meanwhile, the coupling strength between electron and longitudinal optical phonon, determined by the ratio of second to first-order Raman scattering cross sections, diminishes compared with the samples after postannealing at 350 and 500 degrees C. The size dependence of electron-phonon coupling is principally as a result of the Frohlich interaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available