4.6 Article

Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 40, Pages 34025-34032

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M505143200

Keywords

-

Ask authors/readers for more resources

Mutations in the PTEN-induced kinase 1 (PINK1) gene have recently been implicated in autosomal recessive early onset Parkinson Disease ( 1, 2). To investigate the role of PINK1 in neurodegeneration, we designed human and murine neuronal cell lines expressing either wild-type PINK1 or PINK1 bearing a mutation associated with Parkinson Disease. We show that under basal and staurosporine-induced conditions, the number of terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL)-positive cells was lower in wild-type PINK1 expressing SH-SY5Y cells than in mock-transfected cells. This phenotype was due to a PINK1-mediated reduction in cytochrome c release from mitochondria, which prevents subsequent caspase-3 activation. We show that overexpression of wild-type PINK1 strongly reduced both basal and staurosporine-induced caspase 3 activity. Overexpression of wild-type PINK1 also reduced the levels of cleaved caspase-9, caspase-3, caspase-7, and activated poly(ADP-ribose) polymerase under both basal and staurosporine-induced conditions. In contrast, Parkinson disease-related mutations and a kinase-inactive mutation in PINK1 abrogated the protective effect of PINK1. Together, these results suggest that PINK1 reduces the basal neuronal pro-apoptotic activity and protects neurons from staurosporine-induced apoptosis. Loss of this protective function may therefore underlie the degeneration of nigral dopaminergic neurons in patients with PINK1 mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available