4.6 Article

Chlortetracycline and demeclocycline inhibit calpains and protect mouse neurons against glutamate toxicity and cerebral ischemia

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 40, Pages 33811-33818

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M503113200

Keywords

-

Ask authors/readers for more resources

Minocycline is a potent neuroprotective tetracycline in animal models of cerebral ischemia. We examined the protective properties of chlortetracycline (CTC) and demeclocycline (DMC) and showed that these two tetracyclines were also potent neuroprotective against glutamate-induced neuronal death in vitro and cerebral ischemia in vivo. However, CTC and DMC appeared to confer neuroprotection through a unique mechanism compared with minocycline. Rather than inhibiting microglial activation and caspase, CTC and DMC suppressed calpain activities. In addition, CTC and DMC only weakly antagonized N-methyl-D-aspartate ( NMDA) receptor activities causing 16 and 14%, respectively, inhibition of NMDA-induced whole cell currents and partially blocked NMDA-induced Ca2+ influx, commonly regarded as the major trigger of neuronal death. In vitro and in vivo experiments demonstrated that the two compounds selectively inhibited the activities of calpain I and II activated following glutamate treatment and cerebral ischemia. In contrast, minocycline did not significantly inhibit calpain activity. Taken together, these results suggested that CTC and DMC provide neuroprotection through suppression of a rise in intracellular Ca2+ and inhibition of calpains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available