4.7 Article

Dynamical friction and cooling flows in galaxy clusters

Journal

ASTROPHYSICAL JOURNAL
Volume 632, Issue 1, Pages 157-168

Publisher

IOP Publishing Ltd
DOI: 10.1086/432976

Keywords

cooling flows; galaxies : clusters : general; galaxies : interactions; galaxies : kinematics and dynamics; instabilities; X-rays : galaxies : clusters

Ask authors/readers for more resources

We investigate a model of galaxy clusters in which the hot intracluster gas is efficiently heated by dynamical friction (DF) of galaxies. We allow for both subsonic and supersonic motions of galaxies and use the gravitational drag formula in a gaseous medium presented by Ostriker. The energy lost by the galaxies is either redistributed locally or into a Gaussian centered on the galaxy. We find that the condition of hydrostatic equilibrium and strict energy balance yields a trivial isothermal solution T-iso, independent of radius, or rising temperature distributions, provided T-iso/gamma < T < T-iso, where gamma is the adiabatic index of the gas. The isothermal temperature corresponds to the usual scaling relation between the gas temperatures and the velocity dispersions of galaxies. However, the minimal temperature associated with the rising solutions is similar to 1/2 T-vir, larger than that inferred from observations, the radial distribution of galaxy masses notwithstanding. Heating by supersonically moving galaxies cannot suppress thermal instability, although it can lengthen the growth time up to the level comparable to the ages of clusters when the Mach number of galaxies is less than about 2. We show using numerical hydrodynamic simulations that DF-induced heating is generally unable to produce stable equilibrium cores by evolving arbitrary nonequilibrium clusters, although it can lengthen the cooling time. We conclude that DF-induced heating alone is an unlikely solution to the cooling flow problem, although it can still be an important heat supplier, considerably delaying the cooling catastrophe. We discuss other potential consequences of DF of galaxies in galaxy clusters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available