4.8 Article

Dynamic behavior of DNA base pairs containing 8-oxoguanine

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 127, Issue 40, Pages 13906-13918

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja052542s

Keywords

-

Funding

  1. NCI NIH HHS [R01 CA017395, R37 CA017395, CA047995, P01 CA047995, CA17395] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM061678-05, R01 GM061678, GM6167803] Funding Source: Medline

Ask authors/readers for more resources

The process by which DNA repair enzymes recognize and selectively excise damaged bases in duplex DNA is fundamental to our mechanistic understanding of these critical biological reactions. 8-Oxoguanine (8-oxoG) is the most common form of oxidative DNA damage; unrepaired, this lesion generates a G:C-T:A mutation. Central to the recognition and repair of DNA damage is base extrusion, a process in which the damaged base lesion or, in some cases, its partner disengages from the helix and is bound to the enzyme's active site where base excision takes place. The conformation adopted by 8-oxoG in duplex DNA is affected by the base positioned opposite this lesion; conformational changes may also take place when the damaged base binds to its cognate repair enzyme. We performed unrestrained molecular dynamics simulations for several 13-mer DNA duplexes. Oligomers containing G:C and 8oxoG:C pairs adopted Watson-Crick geometries in stable B-form duplexes; 8oxoG showed increased local and global flexibility and a reduced barrier to base extrusion. Duplexes containing the G:A mismatch showed much larger structural fluctuations and failed to adopt a well-defined structure. For the 8oxoG:A mismatch that is recognized by the DNA glycosylase MutY, the damaged nucleoside underwent spontaneous and reproducible anti -> syn transitions. The syn conformation is thermodynamically preferred. Steric hindrance and unfavorable electrostatics associated with the 8oxoG O8 atom in the anti conformation were the major driving forces for this transition. Transition events follow two qualitatively different pathways. The overall anti -> syn transition rate and relative probability of the two transition paths were dependent on local sequence context. These simulations indicate that both the dynamic and equilibrium behavior of the duplex change as a result of oxidation; these differences may provide valuable new insight into the selective action of enzymes on damaged DNA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available