4.8 Article

Paired gap states in a semiconducting carbon nanotube: Deep and shallow levels

Journal

PHYSICAL REVIEW LETTERS
Volume 95, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.95.166402

Keywords

-

Ask authors/readers for more resources

Several paired, localized gap states were observed in semiconducting single-wall carbon nanotubes using spatially resolved scanning tunneling spectroscopy. A pair of gap states is found far from the band edges, forming deep levels, while the other pair is located near the band edges, forming shallow levels. With the help of a first-principles study, the former is explained by a vacancy-adatom complex while the latter is explained by a pentagon-heptagon structure. Our experimental observation indicates that the presence of the gap states provides a means to perform local band-gap engineering as well as doping without impurity substitution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available