4.6 Article

Binding and functions of ADP-ribosylation factor on mammalian and yeast peroxisomes

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 41, Pages 34489-34499

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M503497200

Keywords

-

Ask authors/readers for more resources

We have analyzed in vitro the binding characteristics of members of the ADP-ribosylation factor (ARF) family of proteins to a highly purified rat liver peroxisome preparation void of Golgi membranes and studied in vivo a role these proteins play in the proliferation of yeast peroxisomes. Although both ARF1 and ARF6 were found on peroxisomes, coatomer recruitment only depended on ARF1-GTP. Recruitment of ARF1 and coatomer to peroxisomes was significantly affected both by pretreating the animals with peroxisome proliferators and by ATP and a cytosolic fraction designated the intermediate pool fraction depleted of ARF and coatomer. In the presence of ATP, the concentrations of ARF1 and coatomer on peroxisomes were reduced, whereas intermediate pool fraction led to a concentration-dependent decrease in ARF and increase in coatomer. Brefeldin A, a fungal toxin that is known to reduce ARF1 binding to Golgi membranes, did not affect ARF1 binding to peroxisomes. In Saccharomyces cerevisiae, both ScARF1 and ScARF3, the yeast orthologs of mammalian ARF1 and ARF6, were implicated in the control of peroxisome proliferation. ScARF1 regulated this process in a positive manner, and ScARF3 regulated it in a negative manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available