4.6 Article

Prolonged culture of endothelial cells and deposition of basement membrane modify the recruitment of neutrophils

Journal

EXPERIMENTAL CELL RESEARCH
Volume 310, Issue 1, Pages 22-32

Publisher

ELSEVIER INC
DOI: 10.1016/j.yexcr.2005.07.001

Keywords

endothelium; neutrophil; adhesion; migration; basement membrane; tumour necrosis factor-alpha; inflammation

Ask authors/readers for more resources

We tested whether endothelial cell conditioning during prolonged culture and deposition of basement membrane (BM) could modify neutrophil recruitment induced by the inflammatory cytokine, tumour necrosis factor-alpha (TNF). Confluent endothelial cells (EC) from human umbilical veins were cultured for I to 20 days and then stimulated with 1, 10 or 100 U/ml of TNF for 4h. When isolated neutrophils were settled on EC stimulated with the lower doses of TNF, the levels of adhesion and the proportion of adherent cells that transmigrated increased markedly with time of culture. At 100 U/ml TNF, time of culture had little effect on recruitment, but the transmigrated neutrophils moved more slowly under the monolayer in longer-term cultures. The inhibitory effects of function-blocking antibodies against E-selectin and beta 2-integrin, and studies in which neutrophils were perfused over short- or long-term cultures, suggested that increased adhesion and migration arose from increased efficiency of neutrophil activation by the EC. Prolonged culture was also associated with deposition of a distinct BM. When fresh EC were seeded on day 20 BM, transmigrated neutrophils moved more slowly under the EC than under control monolayers. Thus, EC change their pro-inflammatory phenotype during prolonged culture, and the deposited basement membrane influences neutrophil migration. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available