4.6 Article

The onset of pipewall failure during in-service welding of gas pipelines

Journal

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
Volume 168, Issue 3, Pages 414-422

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jmatprotec.2004.12.001

Keywords

'in-service' welding; hot-tapping; burn-through; numerical modelling; gas pipeline; lost-wall thickness; pipe-wall failure

Ask authors/readers for more resources

This study demonstrates a numerical model to predict the onset of pipe-wall failure for circumferential fillet and longitudinal weld. Numerical methods have been used in the assessment of welding conditions for the safe 'in-service' welding of high-pressure gas pipelines. This has given useful information for the prediction of thermal cycles leading to an estimate of the heat-affected zone (HAZ) hardness and possible cracking. This paper also discusses a new mathematical description of a heat-source representing, a commonly used, manual metal arc (MMA) welding with hydrogen-controlled electrodes. Empirical relationships between welding process inputs, weld bead sizes and shapes define the weldment geometry and control the heat source co-ordinates. The formation of a new three dimensional power density distribution function for a low-hydrogen electrode is also presented. Finite element models using this heat-source have given acceptable correlation with experimental and field welds. The prediction of burn-through has been achieved using thermo-elastoplastic model. This study has investigated earlier work and translates the temperature field into an effective radial deflection in the pipe-wall thickness. This information can be used to calculate a safe working pressure during 'in-service' welding. The simulation of the early stages of pipe-wall failure of circumferential fillet welding using a thermoelastic plastic analysis has been successfully demonstrated. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available