4.7 Article

Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models

Journal

NEUROIMAGE
Volume 28, Issue 1, Pages 140-153

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2005.05.056

Keywords

auditory cortex; middle-latency components; L1-norm; minimum current estimates; EEG; MEG; stereotactic EEG; intracranial; distributed source method

Ask authors/readers for more resources

While source localization methods are increasingly developed to identify brain areas underlying scalp electro/magnetoencephalographic data (EEG/MEG), these methods have not yet been used to identify the sources of intracerebral signals which offer highly detailed information. Here, we adapted the minimum current estimates method to intracranial data in order to localize supratemporal sources of intracerebral auditory 1-kHz-tone-evoked potentials occurring within 100 ms after stimulus onset. After an evaluation of localization method and despite inter-subject variability, we found a common spatiotemporal pattern of activities, which involved the first Heschl's gyrus (H1) and sulcus (HS), the Planum Temporale (PT), H2/H3 when present, and the superior temporal gyrus (STG). Four time periods of activity were distinguished, corresponding to the time range of the scalp components PO, Na, Pa/Pb, and N100. The sources of the earliest components PO (16-19 ms) and Na (20-25 ms) could be identified in the postero-medial portion of HS or H1. Then, several areas became simultaneously active after 25 ms. The Pa/Pb time range (30-50 ms) was characterized by a medio-lateral and postero-anterior propagation of activity over the supratemporal plane involving successively H1/HS, the Planum Temporale, H2/H3 when present, and the STG. Finally, we found to a large extent that the N100 (55-100 ms) involved almost the same areas as those active during the Pa/Pb complex, with a similar propagation of activities. Reconstructing scalp data from these sources on fictive EEG/MEG channels reproduced classical auditory evoked waveforms and topographies. In conclusion, the spatiotemporal pattern of activation of supratemporal auditory areas could be identified on the individual anatomy using current estimates from intracerebral data. Such detailed localization approach could also be used prior to epilepsy surgery to help identify epileptogenic foci and preserve functional cortical areas. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available