4.7 Article

In Vitro and In Vivo Antimicrobial Activities of Gallium Nitrate against Multidrug-Resistant Acinetobacter baumannii

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 56, Issue 11, Pages 5961-5970

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.01519-12

Keywords

-

Funding

  1. Ph.D. fellowship from the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) [SFRH/BD/43420/2008]
  2. Fundação para a Ciência e a Tecnologia [SFRH/BD/43420/2008] Funding Source: FCT

Ask authors/readers for more resources

Multidrug-resistant Acinetobacter baumannii poses a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumannii chemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO3)(3), the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58 A. baumannii strains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 mu M and from 4 to 64 mu M, respectively. Ga(NO3)(3) delayed the entry of A. baumannii into the exponential phase and drastically reduced bacterial growth rates. Ga(NO3)(3) activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO3)(3) also protected Galleria mellonella larvae from lethal A. baumannii infection, with survival rates of >= 75%. At therapeutic concentrations for humans (28 mu M plasma levels), Ga(NO3)(3) inhibited the growth in human serum of 76% of the multidrug-resistant A. baumannii isolates tested by >= 90%, raising expectations on the therapeutic potential of gallium for the treatment of A. baumannii bloodstream infections. Ga(NO3)(3) also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistant A. baumannii.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available