4.6 Article

Magnetic coupling between Cr atoms doped at bulk and surface sites of ZnO

Journal

APPLIED PHYSICS LETTERS
Volume 87, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2106023

Keywords

-

Ask authors/readers for more resources

Contrary to theoretical prediction that Cr-doped bulk ZnO is ferromagnetic, recent experiments on Cr-doped ZnO thin film reveal the coupling to be antiferromagnetic. Using first-principles calculations based on gradient corrected density functional theory, we show that a possible origin of this disagreement may be associated with the site preference of Cr. In bulk, when Cr substitutes Zn, bond contraction occurs and Cr atoms prefer to cluster around O atoms. The ferromagnetic coupling among Cr atoms is driven by Cr 3d and O 2p exchange interactions as in Cr2O cluster. However, when Cr atoms replace Zn on the surface, due to the different bonding environment, bonds expand preventing Cr atoms from clustering around O atoms. Consequently, the coupling between Cr atoms becomes antiferromagnetic. (C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available