4.8 Article

DNA and mRNA elements with complementary responses to hemin, antioxidant inducers, and iron control ferritin-L expression

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0505148102

Keywords

antioxidant responsive element; Maf recognition element; oxygen; iron responsive element; combinatorial regulation

Funding

  1. NHLBI NIH HHS [HL56169, R01 HL056169] Funding Source: Medline
  2. NIDDK NIH HHS [DK20251, R56 DK020251, R01 DK020251] Funding Source: Medline

Ask authors/readers for more resources

Ferritins, an ancient family of protein nanocages, concentrate iron in iron-oxy minerals for iron-protein biosynthesis and protection against oxy radical damage. Of the two genetic mechanisms that regulate rates of ferritin-L synthesis, DNA transcription and mRNA translation, more is known about mRNA regulation where iron targets complexes of an mRNA structure, the iron-responsive element (IRE) sequence, and ferritin IRE repressors (iron regulatory proteins 1 and 2). Neither the integration of mRNA and DNA regulation nor the ferritin-L DNA promoter are well studied. We now report the combined effects of DNA transcription and mRNA translation regulation of ferritin-L synthesis. First, the promoter of human ferritin-L, encoding the animal-specific subunit associated with human diseases, was identified, and contained an overlapping Maf recognition element (MARE) and antioxidant responsive element (ARE) that was positively regulated by tert-butylhydroquinone, sulforaphane, and hemin with responses comparable to thioredoxin reductase (ARE regulator) or quinone reductase (MARE/ARE regulator). Iron, a poor regulator of the ferritin-L promoter, was 800 times less effective than sulforaphane. Combining the ferritin-L MARE/ARE and IRE produced a response to hemin that was 3-fold greater than the sum of responses of the MARE/ARE or IRE alone. Regulation of ferritin-L by a MARE/ARE DNA sequence emphasizes the importance of ferritin-L in oxidative stress that complements the mRNA regulation in iron stress. Combining DNA and mRNA mechanisms of regulation, as for ferritin-L, illustrates the advantages of using two types of genetic targets to achieve sensitive responses to multiple signals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available