4.7 Article

Highwire function at the Drosophila neuromuscular junction:: Spatial, structural, and temporal requirements

Journal

JOURNAL OF NEUROSCIENCE
Volume 25, Issue 42, Pages 9557-9566

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2532-05.2005

Keywords

highwire; synaptogenesis; synaptic transmission; ubiquitin ligase; neuromuscular junction; Drosophila

Categories

Funding

  1. NINDS NIH HHS [NS043171, R01 NS043171] Funding Source: Medline

Ask authors/readers for more resources

Highwire is a huge, evolutionarily conserved protein that is required to restrain synaptic growth and promote synaptic transmission at the Drosophila neuromuscular junction. Current models of highwire function suggest that it may act as a ubiquitin ligase to regulate synaptic development. However, it is not known in which cells highwire functions, whether its putative ligase domain is required for function, or whether highwire regulates the synapse during development or alternatively sets cell fate in the embryo. We performed a series of transgenic rescue experiments to test the spatial, structural, and temporal requirements for highwire function. We find that presynaptic activity of highwire is both necessary and sufficient to regulate both synapse morphology and physiology. The Highwire RING domain, which is postulated to function as an E3 ubiquitin ligase, is required for highwire function. In addition, highwire acts throughout larval development to regulate synaptic morphology and function. Finally, we show that the morphological and physiological phenotypes of highwire mutants have different dosage and temporal requirements for highwire, demonstrating that highwire may independently regulate the molecular pathways controlling synaptic growth and function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available