4.8 Article

The coordination of uranyl in water:: A combined quantum chemical and molecular simulation study

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 127, Issue 41, Pages 14250-14256

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja0526719

Keywords

-

Ask authors/readers for more resources

The coordination environment of uranyl in water has been studied using a combined quantum mechanical and molecular dynamics approach. Multiconfigurational wave function calculations have been performed to generate pair potentials between uranyl and water. The quantum chemically determined energies have been used to fit parameters in a polarizable force field with an added charge transfer term. Molecular dynamics simulations have been performed for the uranyl ion and up to 400 water molecules. The results show a uranyl ion with five water molecules coordinated in the equatorial plane. The U-O(H2O) distance is 2.40 angstrom, which is close to the experimental estimates. A second coordination shell starts at about 4.7 angstrom from the uranium atom. No hydrogen bonding is found between the uranyl oxygens and water. Exchange of waters between the first and second solvation shell is found to occur through a path intermediate between association and interchange. This is the first fully ab initio determination of the solvation of the uranyl ion in water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available