4.5 Article

Conductive polypyrrole via enzyme catalysis

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 41, Pages 19278-19287

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0514978

Keywords

-

Ask authors/readers for more resources

Laccase catalyzes the polymerization of pyrrole into a conducting polymer using dioxygen as the terminal oxidant. This finding is significant, because it identifies an enzymatic route, and thus an environmentally benign method, for preparing a technologically important polymer. In addition, the rate of oxidation of pyrrole increases when the redox molecule, ABTS [2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate)], is included in a reaction medium that contains laccase. This increase in rate occurs because laccase catalyzes the oxidation of ABTS to ABTS(.). In addition to laccase, the biocatalytically generated ABTS(.) oxidizes pyrrole to its corresponding radical cation to yield polypyrrole. Moreover, oxidation of pyrrole by ABTS(.) regenerates ABTS for subsequent biocatalytic turnover. Including ABTS in the reaction medium has two important consequences for the final product: (a) The reaction proceeds rapidly enough to form polymeric films instead of oligomeric precipitates, and (b) ABTS remains within the polymeric film as a redox-active dopant. The charge transport properties of the resulting polymers, both with and without ABTS as the counteranion, are compared to those of other conducting materials including polypyrrole prepared electrochemically or chemically.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available