4.6 Article

Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 42, Pages 35410-35416

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M505478200

Keywords

-

Funding

  1. NHLBI NIH HHS [HL62263] Funding Source: Medline

Ask authors/readers for more resources

Saccharomyces cerevisiae mitochondria contain enzymes required for synthesis of the phospholipids cardiolipin ( CL) and phosphatidylethanolamine ( PE), which are enriched in mitochondrial membranes. Previous studies indicated that PE may compensate for the lack of CL, and vice versa. These data suggest that PE and CL have overlapping functions and that the absence of both lipids may be lethal. To address this hypothesis, we determined whether the crd1 Delta mutant, which lacks CL, was viable in genetic backgrounds in which PE synthesis was genetically blocked. Deletion of the mitochondrial PE pathway gene PSD1 was synthetically lethal with the crd1 Delta mutant, whereas deletion of the Golgi and endoplasmic reticulum pathway genes PSD2 and DPL1 did not result in synthetic lethality. A 20- fold reduction in phosphatidylcholine did not affect the growth of crd1 Delta cells. Supplementation with ethanolamine, which led to increased PE synthesis, or with propanolamine, which led to synthesis of the novel phospholipid phosphatidylpropanolamine, failed to rescue the synthetic lethality of the crd1 Delta psd1 Delta cells. These results suggest that mitochondrial biosynthesis of PE is essential for the viability of yeast mutants lacking CL.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available