4.8 Article

Fermions without fermion fields

Journal

PHYSICAL REVIEW LETTERS
Volume 95, Issue 17, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.95.176407

Keywords

-

Ask authors/readers for more resources

It is shown that an arbitrary fermion hopping Hamiltonian can be mapped into a system with no fermion fields, generalizing an earlier model of Levin and Wen. All operators in the Hamiltonian of the resulting description commute (rather than anticommute) when acting at different sites, despite the system having excitations obeying Fermi statistics. While extra conserved degrees of freedom are introduced, they are all locally identified in the representation obtained. The same methods apply to Majorana (half) fermions, which for Cartesian lattices mitigate the fermion doubling problem. The generality of these results suggests that the observation of Fermion excitations in nature does not demand that anticommuting Fermion fields be fundamental.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available