4.7 Article

Efficient method for the calculation of time- and frequency-resolved four-wave mixing signals and its application to photon-echo spectroscopy

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 123, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2062188

Keywords

-

Ask authors/readers for more resources

An efficient method has been developed for the calculation of third-order time- and frequency-resolved optical signals. To obtain the general four-wave mixing signal, seven auxiliary density matrices have to be propagated in time. For the special cases of two-pulse photon-echo and transient-grating signals, two or three density matrices, respectively, are required. The method is limited to weak laser fields (it is thus valid within the third-order perturbation theory) but allows for any pulse durations and automatically accounts for pulse-overlap effects. To illustrate the method, we present the explicit derivation of the three-pulse photon-echo signal. Any other third-order optical signal can be calculated in the same manner. As an example, two- and three-pulse photon-echo and transient-grating signals for a weakly damped displaced harmonic oscillator have been calculated. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available