4.6 Article

Organic field-effect transistors based on a crosslinkable polymer blend as the semiconducting layer

Journal

APPLIED PHYSICS LETTERS
Volume 87, Issue 18, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2119418

Keywords

-

Ask authors/readers for more resources

For fabrication of top-gate polymer-based organic field-effect transistors (OFETs), it is essential that the semiconducting layer remain intact during spin coating of the overlying dielectric layer. This requirement severely limits the applicable solvent and materials combinations. We show here that a crosslinkable polymer blend consisting of a p-type semiconducting polymer {e.g., TFB; poly[9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine]} and an electroactive crosslinkable silyl reagent {e.g., TPDSi2; 4,4(')-bis[(p-trichloro-silylpropylphenyl)phenylamino]biphenyl} is effective as the semiconducting layer in a top-gate bottom-contact OFET device. The TFB+TPDSi2 semiconducting blend is prepared by spin-coating in ambient. The crosslinking process occurs during spin-coating in air and is completed by curing at 90 degrees C, which renders the resulting film insoluble in common organic solvents and allows subsequent deposition of dielectric layers from a wide range of organic solvents. We also show that the presence of TPDSi2 in the semiconductor layer significantly reduces typical TFB-source-drain threshold voltages in bottom-contact devices, likely due to favorable interfacial TPDSi2-gold electrode interactions. (C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available