4.7 Article

In Vivo Selection of a Missense Mutation in adeR and Conversion of the Novel blaOXA-164 Gene into blaOXA-58 in Carbapenem-Resistant Acinetobacter baumannii Isolates from a Hospitalized Patient

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 54, Issue 12, Pages 5021-5027

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.00598-10

Keywords

-

Funding

  1. Bundesministerium fur Bildung und Forschung (BMBF), Germany
  2. Klinische Forschergruppe Infektiologie [01KI0771]

Ask authors/readers for more resources

The mechanism of stepwise acquired multidrug resistance in Acinetobacter baumannii isolates from a hospitalized patient was investigated. Thirteen consecutive multidrug-resistant isolates were recovered from the same patient over a 2-month period. The Vitek 2 system identified the isolates as meropenem-sensitive Acinetobacter lwoffii; however, molecular identification showed that the isolates were A. baumannii. Etest revealed that the isolates were meropenem resistant. The presence of oxacillinase (OXA)-type enzymes were investigated by sequencing. The clonal relatedness of isolates was assessed by pulsed-field gel electrophoresis (PFGE). Expression of the genes encoding the efflux pumps AdeB and AdeJ was performed by semiquantitative real-time reverse transcription-PCR (qRT-PCR). The adeRS two-component system was sequenced. All isolates had identical PFGE fingerprints, suggesting clonal identity. The first six isolates were positive for the novel bla(OXA-164) gene. The following seven isolates, recovered after treatment with a combination of meropenem, amikacin, ciprofloxacin, and co-trimoxazole showed an increase of >7-fold in adeB mRNA transcripts and a missense mutation in bla(OXA-164), converting it to bla(OXA-58). Sequencing revealed a novel mutation in adeR. These data illustrate how A. baumannii can adapt during antimicrobial therapy, leading to increased antimicrobial resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available