4.8 Article

Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 22, Issue 11, Pages 2304-2312

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msi228

Keywords

nucleotide; substitution; mutation; maize; methylation; coalescent

Funding

  1. NIGMS NIH HHS [F32 GM-65008, GM058816] Funding Source: Medline

Ask authors/readers for more resources

To estimate a rate for single nucleotide substitutions for maize (Zea mays ssp. mays), we have taken advantage of data from genetic and archaeological studies of the domestication of maize from its wild ancestor, teosinte (Z. mays ssp. parviglumis). Genetic studies have shown that the teosinte branched1 (tb1) gene was a major target of human selection during maize domestication, and sequence diversity in the intergenic region 5' to the tb1-coding sequence is extraordinarily low. We show that polymorphism in this region is consistent with new mutation following fixation for a small number of tb1 haplotypes during domestication. Archeological studies suggest that maize was domesticated similar to 6,250-10,000 years ago and subsequently the size of the maize population is thought to have expanded rapidly. Using the observed number of mutations within the region of selection at tb1, the approximate age of maize domestication, and approximations for the maize genealogy, we have derived estimates for the nucleotide substitution rate for the tb1 intergenic region. Using two approaches, one of which is a coalescent approach, we obtain rate estimates of similar to 2.9 x 10(-8) and 3.3 x 10(-8) substitutions per site per year. We also show that the pattern of polymorphism in the tb1 intergenic region appears to have been strongly affected by the mutagenic effect of DNA methylation. Excluding target sites of symmetric DNA methylation (CG and CNG sites) from analysis, the mutation rate estimates are reduced by similar to 50%-60%, while the rates for CG and CNG sites are nearly an order of magnitude higher. We use rate estimates from the tb1 region to estimate the timing of expansion of transposable elements in the maize genome and suggest that this expansion occurred primarily within the last million years.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available