4.6 Article

A nondestructive molecule extraction method allowing morphological and molecular analyses using a single tissue section

Journal

LABORATORY INVESTIGATION
Volume 85, Issue 11, Pages 1416-1428

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/labinvest.3700337

Keywords

molecule extraction; tissue section; immunohistochemistry; pathological diagnosis; molecular analysis

Funding

  1. NCI NIH HHS [1R21 CA091166-01A1] Funding Source: Medline

Ask authors/readers for more resources

In clinical practice, molecular analysis of tumor specimens is often restricted by available technology for sample preparation. Virtually all current methods require homogenization of tissues for molecule extraction. We have developed a simple, rapid, nondestructive molecule extraction (NDME) method to extract proteins and nucleic acids directly from a single fixed or frozen tissue section without destroying the tissue morphology. The NDME method is based upon exposure of micron-thick tissue section to extraction buffer with the help of heating and/or intact physical forces ( ultrasound and microwave) to facilitate release of macromolecules into the buffer. The extracted proteins and nucleic acids can be used directly without further purification for downstream SDS-PAGE analysis, immunoblotting, protein array, mass spectra protein profiling, PCR, and RTPCR reactions. Most importantly, the NDME procedure also serves as an antigen retrieval treatment, so that after NDME, the same tissue section can be used for histopathological analyses, such as H&E staining, immunohistochemistry, and in situ hybridization. Thus, the NDME method allows, for the first time, both histological diagnosis and molecular analysis on a single tissue section, whether it is from frozen or fixed tissue specimens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available