4.7 Article

The Antibiotic Monensin Causes Cell Cycle Disruption of Toxoplasma gondii Mediated through the DNA Repair Enzyme TgMSH-1

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 55, Issue 2, Pages 745-755

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.01092-10

Keywords

-

Funding

  1. NCRR Center of Biomedical Research Centers, NIH [R01 AI 89808-01, P20 RR15587]
  2. American Cancer Society [115626-RSG-08-193-01-MBC]

Ask authors/readers for more resources

Monensin is a polyether ionophore antibiotic that is widely used in the control of coccidia in animals. Despite its significance in veterinary medicine, little is known about its mode of action and potential mechanisms of resistance in coccidian parasites. Here we show that monensin causes accumulation of the coccidian Toxoplasma gondii at an apparent late-S-phase cell cycle checkpoint. In addition, experiments utilizing a monensin-resistant T. gondii mutant show that this effect of monensin is dependent on the function of a mitochondrial homologue of the MutS DNA damage repair enzyme (TgMSH-1). Furthermore, the same TgMSH-1-dependent cell cycle disruption is observed with the antiparasitic ionophore salinomycin and the DNA alkylating agent methyl nitrosourea. Our results suggest a novel mechanism for the mode of action of monensin and salinomycin on coccidial parasites, in which the drug activates an MSH-1-dependent cell cycle checkpoint by an unknown mechanism, ultimately leading to the death of the parasite. This model would indicate that cell cycle disruption is an important mediator of drug susceptibility and resistance to ionophoric antibiotics in coccidian parasites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available