4.6 Article

Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 71, Issue 11, Pages 6918-6925

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.71.11.6918-6925.2005

Keywords

-

Ask authors/readers for more resources

Spore formation is a sophisticated mechanism by which some bacteria survive conditions of stress and starvation by producing a multilayered protective capsule enclosing their condensed DNA. Spores are highly resistant to damage by heat, radiation, and commonly employed antibacterial agents. Previously, spores have also been shown to be resistant to photodynamic inactivation using dyes and light that easily destroy the corresponding vegetative bacteria. We have discovered that Bacillus spores are susceptible to photoinactivation by phenothiazinium dyes and low doses of red light. Dimethylmethylene blue, methylene blue, new methylene blue, and toluidine blue O are all effective, while alternative photosensitizers such as Rose Bengal, polylysine chlorin(e6) conjugate, a tricationic porphyrin, and a benzoporphyrin derivative, which easily kill vegetative cells, are ineffective. Spores of Bacillus cereus and B. thuringiensis are most susceptible, B. subtilis and B. atrophaeus are also killed, and B. megaterium is resistant. Photoinactivation is most effective when excess dye is washed from the spores, showing that the dye binds to the spores and that excess dye in solution can quench light delivery. The relatively mild conditions needed for spore killing could have applications for treating wounds contaminated by anthrax spores, for which conventional sporicides would have unacceptable tissue toxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available