4.6 Article

Domain-general and domain-sensitive prefrontal mechanisms for recollecting events and detecting novelty

Journal

CEREBRAL CORTEX
Volume 15, Issue 11, Pages 1768-1778

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhi054

Keywords

attention; cognitive control; familiarity; fMRI; memory; prefrontal cortex

Categories

Ask authors/readers for more resources

Recollecting the past and discriminating novel from familiar memoranda depend on poorly understood prefrontal cortical (PFC) mechanisms hypothesized to vary according to memory task (e.g. recollection versus novelty detection) and domain of targeted memories (e.g. perceptual versus conceptual). Using event-related fMRI, we demonstrate that recollecting conceptual or perceptual details surrounding object encounters similarly recruits left frontopolar and posterior PFC compared with detecting novel stimuli, suggesting that a domain-general control network is engaged during contextual remembering. In contrast, left anterior ventrolateral PFC coactivated with a left middle temporal region associated with semantic representation, and right ventrolateral PFC with bilateral occipito-temporal cortices associated with representing object form, depending on whether recollections were conceptual or perceptual. These PFC/posterior cortical dissociations suggest that during recollection, lateralized ventrolateral PFC mechanisms bias posterior conceptual or perceptual feature representations as a function of memory relevance, potentially improving the gain of bottom-up memory signals. Supporting this domain-sensitive biasing hypothesis, novelty detection also recruited right ventrolateral PFC and bilateral occipito-temporal cortices compared with conceptual recollection, suggesting that searching for novel objects heavily relies upon perceptual feature processing. Collectively, these data isolate task- from domain-sensitive PFC control processes strategically recruited in the service of episodic memory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available