4.7 Article

Galleria mellonella as a Model System To Study Acinetobacter baumannii Pathogenesis and Therapeutics

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 53, Issue 6, Pages 2605-2609

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.01533-08

Keywords

-

Funding

  1. NIH [K08AI63084, R01AI075286]
  2. Ellison Medical Foundation
  3. University of Queensland postgraduate scholarship award
  4. Cubist Pharmaceuticals
  5. Pfizer, Inc.
  6. Astellas Pharma Inc.

Ask authors/readers for more resources

Nonmammalian model systems of infection such as Galleria mellonella (caterpillars of the greater wax moth) have significant logistical and ethical advantages over mammalian models. In this study, we utilize G. mellonella caterpillars to study host-pathogen interactions with the gram-negative organism Acinetobacter baumannii and determine the utility of this infection model to study antibacterial efficacy. After infecting G. mellonella caterpillars with a reference A. baumannii strain, we observed that the rate of G. mellonella killing was dependent on the infection inoculum and the incubation temperature postinfection, with greater killing at 37 C than at 30 C (P = 0.01). A. baumannii strains caused greater killing than the less-pathogenic species Acinetobacter baylyi and Acinetobacter lwoffii (P < 0.001). Community-acquired A. baumannii caused greater killing than a reference hospital-acquired strain (P < 0.01). Reduced levels of production of the quorum-sensing molecule 3-hydroxy-C-12-homoserine lactone caused no change in A. baumannii virulence against G. mellonella. Treatment of a lethal A. baumannii infection with antibiotics that had in vitro activity against the infecting A. baumannii strain significantly prolonged the survival of G. mellonella caterpillars compared with treatment with antibiotics to which the bacteria were resistant. G. mellonella is a relatively simple, nonmammalian model system that can be used to facilitate the in vivo study of host-pathogen interactions in A. baumannii and the efficacy of antibacterial agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available