4.7 Article

Inhibitor Resistance in the KPC-2 β-Lactamase, a Preeminent Property of This Class A β-Lactamase

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 54, Issue 2, Pages 890-897

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.00693-09

Keywords

-

Funding

  1. National Institutes of Health [RO1 AI063517-01]
  2. Geriatric Research, Education and Clinical Center

Ask authors/readers for more resources

As resistance determinants, KPC beta-lactamases demonstrate a wide substrate spectrum that includes carbapenems, oxyimino-cephalosporins, and cephamycins. In addition, clinical strains harboring KPC-type beta-lactamases are often identified as resistant to standard beta-lactam-beta-lactamase inhibitor combinations in susceptibility testing. The KPC-2 carbapenemase presents a significant clinical challenge, as the mechanistic bases for KPC-2-associated phenotypes remain elusive. Here, we demonstrate resistance by KPC-2 to beta-lactamase inhibitors by determining that clavulanic acid, sulbactam, and tazobactam are hydrolyzed by KPC-2 with partition ratios (k(cat)/k(inact) ratios, where k(inact) is the rate constant of enzyme inactivation) of 2,500, 1,000, and 500, respectively. Methylidene penems that contain an sp(2)-hybridized C-3 carboxylate and a bicyclic R1 side chain (dihydropyrazolo[1,5-c][1,3]thiazole [penem 1] and dihydropyrazolo[5,1-c][1,4]thiazine [penem 2]) are potent inhibitors: K-m of penem 1,0.06 +/- 0.01 mu M, and K-m of penem 2,0.006 +/- 0.001 mu M. We also demonstrate that penems 1 and 2 are mechanism-based inactivators, having partition ratios (k(cat)/k(inact) ratios) of 250 and 50, respectively. To understand the mechanism of inhibition by these penems, we generated molecular representations of both inhibitors in the active site of KPC-2. These models (i) suggest that penem 1 and penem 2 interact differently with active site residues, with the carbonyl of penem 2 being positioned outside the oxyanion hole and in a less favorable position for hydrolysis than that of penem 1, and (ii) support the kinetic observations that penem 2 is the better inhibitor (k(inact)/K-m = 6.5 +/- 0.6 mu M-1 s(-1)). We conclude that KPC-2 is unique among class A beta-lactamases in being able to readily hydrolyze clavulanic acid, sulbactam, and tazobactam. In contrast, penem-type beta-lactamase inhibitors, by exhibiting unique active site chemistry, may serve as an important scaffold for future development and offer an attractive alternative to our current beta-lactamase inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available