4.6 Article

Standard forms of noisy quantum operations via depolarization -: art. no. 052326

Journal

PHYSICAL REVIEW A
Volume 72, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.72.052326

Keywords

-

Ask authors/readers for more resources

We consider completely positive maps that describe noisy, multiparticle unitary operations. We show that by random single-particle operations the completely positive maps can be depolarized to a standard form with a reduced number of parameters describing the noise process in such a way that the noiseless (unitary) part of the evolution is not altered. A further reduction of the parameters, in many cases even to a single one (i.e., global white noise), is possible by tailoring the decoherence process and increasing the amount of noise. We generalize these results to the dynamical case where the noisy evolution is described by a master equation of Lindblad form, and the noiseless evolution is specified by an interaction Hamiltonian. The resulting standard forms may be used to compute lower bounds on channel capacities, to simplify quantum process tomography or to derive error thresholds for entanglement purification and quantum computation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available