4.6 Article

TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator

Journal

PAIN
Volume 118, Issue 1-2, Pages 70-79

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.pain.2005.07.016

Keywords

TRPV4; DRG nociceptors; hypertonicity; osmo-transduction; prostaglandin E-2; src tyrosine kinase

Ask authors/readers for more resources

The ligand-gated ion channel, TRPV4, functions as a transducer of hypotonic stimuli in primary afferent nociceptive neurons and contributes to inflammatory and neuropathic pain. Hypertonic saline also stimulates primary afferent nociceptors and the injection of mild hypertonic saline (2-5%) is widely used as an experimental model of pain in humans. Therefore, we tested whether TRPV4 participates in the transduction of hypertonic stimuli. Intradermal injection of 2% (607 mOsm) or 10% (3250 mOsm) saline solution in the hind paw of rats induced a concentration-dependent pain-related behavior, flinching. Sensitization with prostaglandin E-2 (PGE(2)) caused a 7-fold increase in the number of flinches induced by 2% saline but failed to increase those caused by 10% saline. Spinal administration of antisense oligodeoxynucleotides to TRPV4 caused a 46% decrease in the number of flinches induced by 2% saline, but there was no change in flinching induced by 10% saline. Similarly, only the nociceptive behavior caused by 2% saline was reduced in TRPV4(-/-) knockout mice. The TRPV4-mediated nociceptive behaviors induced by hyper- and hypotonic stimuli were dependent on Src tyrosine kinase. We suggest TRPV4 is a transducer in primary afferents that mediates nociceptive behavior induced by small increases or decreases in osmolarity. Such changes in osmolarity might contribute to pain in inflammatory and neuropathic states. (c) 2005 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available