4.5 Article

Novel multiwavelength microscopic scanner for mouse imaging

Journal

NEOPLASIA
Volume 7, Issue 11, Pages 977-983

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1593/neo.05376

Keywords

confocal microscopy; reconstruction; imaging; near-infrared; fluorescence

Categories

Funding

  1. NCI NIH HHS [P50CA86355, R24 CA092782, R24CA92782, P50 CA086355] Funding Source: Medline

Ask authors/readers for more resources

Real-time in vivo imaging of molecular targets at (sub)cellular resolution is essential in better understanding complex biology. Confocal microscopy and multiphoton microscopy have been used in the past to achieve this goal, but their true capabilities have often been limited by bulky optics and difficult experimental set-ups requiring exteriorized organs. We describe here the development and validation of a unique near-infrared laser scanning microscope system that uses novel optics with a millimeter footprint. Optimized for use in the far red and near-infrared ranges, the system allows an imaging depth that extends up to 500 mu m from a 1.3-mm-diameter stick objective, which is up to 2 cm in length. We show exceptionally high spatial, temporal, and multiwavelength resolutions of the system and show that it can be applied to virtually any internal organ through a keyhole surgical access. We demonstrate that, when combined with novel far red imaging probes, it is possible to image the cellular details of many organs and disease processes. The new optics, coupled with the use of near-infrared probes, should prove immensely valuable for in vivo cancer imaging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available