4.6 Article Proceedings Paper

Tailored and anisotropic dielectric constants through porosity in ceramic components

Journal

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
Volume 53, Issue 11, Pages 3638-3647

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMTT.2005.859039

Keywords

anisotropy; ceramic; dielectric materials; dielectric measurements; dielectric-resonator antenna (DRA); inhomogeneous media; resonator

Ask authors/readers for more resources

In this paper, different densities within a ceramic are used to provide a wide continuous range of dielectric constants for high-frequency applications. Cofiring different ceramic materials together to make a single unified structure to obtain different dielectric constant combinations is quite difficult due to phase stability issues and shrinkage mismatches. However, using various levels of porosity in order to alter the effective dielectric constant in the same material allows patterning different dielectric constants into a single unit. Since the structure is made from a single material, the varying porosity regions can be made compatible. Glassy-carbon-assisted and microcellular-structure-based porous titania allow for an extremely wide range of dielectric constants, ranging from 12 to 90, while maintaining a low loss tangent. Highly anisotropic materials are demonstrated herein to achieve a dielectric constant contrast of 90/9.6 using large-range aligned microcellular structure. Dielectric-resonator antennas are shown as an application of adjusting the bandwidth between 0.5% and 2.5% by tailoring the ceramic dielectric constant. A stratified-medium-loaded cavity resonator and a buried dielectric ring resonator internal to a microcellular substrate are used to demonstrate both the cofiring and variable dielectric constant capabilities of structured porosity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available