4.6 Article

Calculated energy loss of swift He, Li, B, and N ions in SiO2, Al2O3, and ZrO2 -: art. no. 052902

Journal

PHYSICAL REVIEW A
Volume 72, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.72.052902

Keywords

-

Ask authors/readers for more resources

We have calculated the electronic stopping power and the energy-loss straggling parameter of swift He, Li, B, and N ions moving through several oxides, namely SiO2, Al2O3, and ZrO2. The evaluation of these stopping magnitudes was done in the framework of the dielectric formalism. The target properties are described by means of a combination of Mermin-type energy-loss functions that characterize the response of valence-band electrons, together with generalized oscillator strengths to take into account the ionization of inner-shell electrons. We have considered the different charge states that the projectile can have, as a result of electron capture and loss processes, during its motion through the target. The electron density for each charge state was described using the Brandt-Kitagawa statistical model and, for He and Li ions, also hydrogenic orbitals. This procedure provides a realistic representation of both the excitation properties of the target electrons and the projectile charge density, yielding stopping powers that compare reasonably well with available experimental data above a few tens of keV/amu.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available