4.4 Article Proceedings Paper

Vibration control of a structural system using magneto-rheological fluid mount

Journal

JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES
Volume 16, Issue 11-12, Pages 931-936

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/1045389X05053917

Keywords

magneto-rheological fluid; vibration control; flexible structure; mount system; optimal control

Ask authors/readers for more resources

In this work, a mixed mode-type magneto-rheological fluid mount (MR mount in short) is devised by considering the nondimensional formulation of Bingham plastic flow, and applied to vibration control of a structural system subjected to external excitations. The structural system consists of a vibrating mass, semi-active MR fluid mount, and passive rubber mounts. The MR mount is installed on the beam structure as a semi-active actuator and supports the vibrating mass, while the flexible beam structure is supported by two passive rubber mounts. After verifying the field-dependent damping force characteristics of the MR mount, the governing equation of the structural system is derived in the modal coordinate and rewritten as a state space control model. The linear quadratic Gaussian (LQG) controller is then formulated in order to attenuate vibration of the structural system. The LQG controller is experimentally realized and control responses such as accelerations and transmitted forces of the structural system are presented in the frequency domain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available