4.6 Article

Multiflavor bosonic Hubbard models in the first excited Bloch band of an optical lattice

Journal

PHYSICAL REVIEW A
Volume 72, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.72.053604

Keywords

-

Ask authors/readers for more resources

We propose that by exciting ultracold atoms from the zeroth to the first Bloch band in an optical lattice, multiflavor bosonic Hubbard Hamiltonians can be realized in a different way. In these systems, each flavor hops in a separate direction and on-site exchange terms allow pairwise conversion between different flavors. Using band-structure calculations, we determine the parameters entering these Hamiltonians and derive the mean-field ground-state phase diagram for two effective Hamiltonians (two dimensional, two flavors, and three dimensional, three flavors). Further, we estimate the stability of atoms in the first band using second-order perturbation theory and find lifetimes that can be considerably (10-100 times) longer than the relevant time scale associated with intersite hopping dynamics, suggesting that quasiequilibrium can be achieved in these metastable states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available