4.7 Article

Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs

Journal

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
Volume 53, Issue 11, Pages 3459-3468

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAP.2005.858842

Keywords

finite-difference time-domain (FDTD); parallel computation; particle swarm optimization; patch antenna

Ask authors/readers for more resources

This paper presents a novel evolutionary optimization methodology for multiband and wide-band patch antenna designs. The particle swarm optimization (PSO) and the finite-difference time-domain (FDTD) are combined to achieve the optimum antenna satisfying a certain design criterion. The antenna geometric parameters are extracted to be optimized by PSO, and a fitness function is evaluated by FDTD simulations to represent the performance of each candidate design. The optimization process is implemented on parallel clusters to reduce the computational time introduced by full-wave analysis. Two examples are investigated in the paper: first, the design of rectangular patch antennas is presented as a test of the parallel PSO/FDTD algorithm. The optimizer is then applied to design E-shaped patch antennas. It is observed that by using different fitness functions, both dual-frequency and wideband antennas with desired performance are obtained by the optimization. The optimized E-shaped patch antennas are analyzed, fabricated, and measured to validate the robustness of the algorithm. The measured less than - 18 dB return loss (for dual-frequency antenna) and 30.5% bandwidth (for wide-band antenna) exhibit the prospect of the parallel PSO/FDTD algorithm in practical patch antenna designs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available