4.3 Article

Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 61, Issue 2, Pages 227-238

Publisher

WILEY
DOI: 10.1002/prot.20592

Keywords

chondroitin; hyaluronan; hyaluronidase; mechanism of action; modeling; structure/function

Funding

  1. NIAID NIH HHS [AI44078] Funding Source: Medline

Ask authors/readers for more resources

Human hyaluronidases (Hyals) are a group of five endo-beta-acetyl-hexosaminidase enzymes, Hyal-1, -2, -3, -4, and PH-20, which degrade hyaluronan using a hydrolytic mechanism of action. Catalysis by these Hyals has been shown to follow a double-displacement scheme. This involves a single G1u residue within the enzyme, the only catalytic residue, as the proton donor (acid). Also involved is a carbonyl group of the hyaluronan (HA) N-acetyl-D-glucosamine as a unique type of nucleophile. Thus the substrate participates in the mechanism of action of its own catalysis. An oxocarbonium ion transition state is postulated, but there is no formation of a covalent enzyme-glycan intermediate, as found in most such reactions. The major domain is catalytic and has a distorted (beta/alpha)(8) triose phosphate isomerase (TIM) barrel fold. The C-terminal domain is separated by a peptide linker. Each Hyal has a different C-terminal sequence and structure, the function of which is unknown. These unique C-termini may participate in the additional function(s) associated with these multifunctional enzymes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available