4.6 Article

Silicon carbide photoconductive switch for high-power, linear-mode operations through sub-band-gap triggering

Journal

JOURNAL OF APPLIED PHYSICS
Volume 98, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2126158

Keywords

-

Ask authors/readers for more resources

The analysis of a 6H silicon carbide (SiC) photoconductive switch, designed and packaged for high-power, linear-mode operations, is presented. The switch, fabricated from semi-insulating compensated SiC, is triggered by an optical source with photon energy less than the band-gap energy. Simulation models incorporating the effects of vanadium trap and nitrogen dopant in the compensation material show I-V characteristics that agree with measured values. The photoconductive switch has improved rise-time characteristics as compared to a gallium arsenide (GaAs) switch. The analysis also shows that improved performance at high power is possible through passivation using high-permittivity dielectric near the contact-semiconductor interface and by placing a p(+) layer next to the cathode. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available