4.7 Article

Stability and magnetic characterization of oleate-covered magnetite ferrofluids in different nonpolar carriers

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 291, Issue 1, Pages 144-151

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2005.04.099

Keywords

ferrofluid; magnetite nanoparticles; oleic acid; lyophobic attraction; magnetic diameter; magnetic moment; saturation magnetization; magnetic susceptibility

Ask authors/readers for more resources

This work describes the preparation and stability evaluation of suspensions consisting of hydrophobic magnetite nanoparticles dispersed in different organic solvents. The ferrite particles are covered by a shell of chemisorbed oleate ions following a procedure that is described in detail. The oleate-covered particles were dispersed in different organic solvents with dielectric constants, epsilon(r), ranging between 1.8 and 9, and the centrifugal field strength needed to remove particle aggregates formed during the synthesis was determined for the different liquid carriers used. A thermodynamic analysis demonstrated that the observed stability of the suspensions in liquids with epsilon(r) < 5 is well correlated with the very low lyophobic attraction between the particles. This can easily be surmounted by thermal agitation, since the van der Waals attraction is negligible. In contrast, for liquids with epsilon(r) > 9, the suspensions become unstable because of the combined action of the van der Waals and lyophobic attractions, the latter being dominant for very polar solvents. Finally, a complete magnetic characterization of the oleate-magnetite powder, as well as of several stable ferrofluids prepared with it, was carried out. From this characterization, the magnetic diameters and magnetic moments of the particles immersed in the different liquid carriers were estimated and compared to those corresponding to the dry magnetic particles. This made it possible to estimate the thickness of the nonmagnetic layer on the particles. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available