4.7 Review

Molecular structure, binding properties and dynamics of lactoferrin

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 62, Issue 22, Pages 2531-2539

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00018-005-5368-9

Keywords

lactoferrin; crystal structures; domains; conformational change; iron; cooperative interactions; surface charge; glycosylation

Ask authors/readers for more resources

Lactoferrin (Lf), a prominent protein in milk, many other secretory fluids and white blood cells, is a monomeric, 80-kDa glycoprotein, with a single polypeptide chain of about 690 amino acid residues. Amino acid sequence relationships place it in the wider transferrin family. Crystallographic analyses of human Lf, and of the Lfs from cow, horse, buffalo and camel, reveal a highly conserved three-dimensional structure, but with differences in detail between species. The molecule is folded into homologous N- and C-terminal lobes, each comprising two domains that enclose a conserved iron binding site. Iron binding and release is accompanied by domain movements that close or open the sites, and is influenced by cooperative interactions between the lobes. Patches of high positive charge on the surface contribute to other binding properties, but the attached glycan chains appear to have little impact on structure and function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available