4.6 Article

Optically driven nanotube actuators

Journal

NANOTECHNOLOGY
Volume 16, Issue 11, Pages 2548-2554

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/16/11/014

Keywords

-

Ask authors/readers for more resources

Optically driven actuators have been fabricated from single-wall carbon nanotube-polymer composite sheets. Like natural muscles, the millimetre-scale actuators are assemblies of millions of individual nanotube actuators processed into macroscopic length scales and bonded to an acrylic elastomer sheet to form an actuator that have been shown to generate higher stress than natural muscles and higher strains than high-modulus piezoelectric materials. Strain measurements revealed 0.01%-0.3% elastic strain generated due to electrostatic and thermal effects under visible light intensities of 5-120 mW cm(-2). An optically actuated nanotube gripper is demonstrated to show manipulation of small objects. This actuation technology overcomes some of the fundamental limitations such as the use of high voltages or electrochemical solutions for actuation, opening up possibilities for remote light-induced actuation technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available